Em que mundo vivemos… Gás natural e água, como elemento de guerra…
Mar 31, 2023Otimização estocástica de um mecanismo de reação de óxido de urânio usando medições de reator de fluxo de plasma
Apr 02, 2023Este aspirador sem fio é uma ferramenta 'verdadeira multiuso', de acordo com os compradores - e custa quase US $ 300 na Amazon
Apr 04, 2023Este músculo artificial move coisas por conta própria
Apr 06, 2023Calendário de eventos da comunidade: 8 de junho
Apr 08, 2023Otimização estocástica de um mecanismo de reação de óxido de urânio usando medições de reator de fluxo de plasma
Scientific Reports volume 13, Número do artigo: 9293 (2023) Citar este artigo
Detalhes das métricas
Neste trabalho, uma abordagem acoplada do Algoritmo Genético de Monte Carlo (MCGA) é usada para otimizar um mecanismo de reação de óxido de urânio em fase gasosa baseado em medições de reator de fluxo de plasma (PFR). O PFR produz um plasma constante de Ar contendo espécies de U, O, H e N com regiões de alta temperatura (3.000–5.000 K) relevantes para observar a formação de UO por meio de espectroscopia de emissão óptica. Um tratamento cinético global é usado para modelar a evolução química no PFR e produzir sinais de emissão sintéticos para comparação direta com experimentos. O espaço de parâmetros de um mecanismo de reação de óxido de urânio é então explorado por meio de amostragem de Monte Carlo usando funções objetivas para quantificar a concordância modelo-experiência. Os resultados de Monte Carlo são subsequentemente refinados usando um algoritmo genético para obter um conjunto de caminhos de reação e coeficientes de velocidade corroborados experimentalmente. Dos 12 canais de reação direcionados para otimização, quatro canais são bem restritos em todas as execuções de otimização, enquanto outros três canais são restritos em casos selecionados. Os canais otimizados destacam a importância do radical OH na oxidação do urânio no PFR. Este estudo compreende um primeiro passo para a produção de um mecanismo de reação abrangente experimentalmente validado para a formação de espécies moleculares de urânio em fase gasosa.
A cinética de reação de óxidos metálicos na fase gasosa é de grande relevância para muitos campos de pesquisa, incluindo astrofísica, ciência da combustão, engenharia nuclear e química de materiais em ambientes extremos. Nos últimos anos, este último campo produziu numerosos trabalhos experimentais e computacionais sobre a química do vapor de óxido de urânio (\({{\mathrm{UO_x}}}\))1. Produtos de fase gasosa de óxidos refratários, como \({{\mathrm{UO_x}}}\), têm sido historicamente difíceis de produzir devido às altas temperaturas de vaporização dos óxidos originais. Mais recentemente, os sistemas de plasma térmico forneceram um caminho para a produção imediata de metais na fase gasosa e para o estudo de sua química em ambientes reativos. No entanto, os tempos de extinção rápidos, a presença de radicais de fundo e a formação de óxidos intermediários voláteis em tais sistemas dificultam o isolamento de canais de reação específicos para estudo. Problemas semelhantes surgem em outros sistemas reativos de alta temperatura, como combustíveis de combustão de metal. Como resultado, os mecanismos de oxidação de metais em fase gasosa são frequentemente baseados em dados experimentais esparsos e estimativas teóricas de primeira ordem, como para a formação de óxido de alumínio2,3,4. Da mesma forma, um mecanismo de reação \({{\mathrm{UO_x}}}\) foi construído usando uma metodologia comparável em nosso trabalho anterior5. Embora tais mecanismos produzam resultados qualitativamente razoáveis que podem se alinhar com alguns observáveis experimentais, a validação experimental detalhada é difícil de alcançar. Esta etapa de validação é crucial para garantir que o mecanismo cinético químico possa ser usado de maneira preditiva para informar modelos subsequentes. Aqui, exploramos um método de inferir coeficientes de taxa de óxido de urânio (\({{\mathrm{UO_x}}}\)) com base em medições experimentais de um sistema de plasma térmico.
Devido à natureza fortemente acoplada e não linear da cinética química em plasmas de urânio, a extração de informações sobre a taxa de reação requer a resolução de um problema de otimização. Neste problema, os parâmetros subjacentes do modelo (coeficientes de taxa) são determinados com base nas saídas observadas (ou seja, informações espectroscópicas). Resolver tal problema por métodos determinísticos baseados em gradientes é difícil devido ao espaço de parâmetros potencialmente complexo com numerosos mínimos locais. Nesse caso, deve-se utilizar um método de otimização capaz de explorar continuamente todo o espaço de parâmetros enquanto localiza o mínimo global. Um desses métodos usados anteriormente para problemas de cinética química é o algoritmo genético de Monte Carlo (MCGA)6. Esta técnica é adequada para o problema atual devido à sua eficácia em evitar a convergência em mínimos locais e sua facilidade de implementação. Independentemente da metodologia, a solução de um problema de otimização requer avaliações repetidas do modelo associado, muitas vezes numerando de milhares a milhões de execuções. Embora tempos computacionais razoáveis sejam alcançados ao resolver a cinética química em um sistema espacialmente uniforme, o problema rapidamente se torna inviável quando a química é acoplada ao transporte de fluidos complexos. Essa consideração se torna importante na escolha de um sistema experimental para informar o problema de otimização.
where \({\varvec{k}}\) is a vector containing the reaction rate coefficients and \(n^{exp}_i\) and \(n^{calc}_i({\varvec{k}})\) are the measured and calculated species number densities at time point i, respectively. The optimization problem is solved by employing an iterative procedure that finds an optimal parameter set \({\varvec{k}}\) that minimizes the objective function \(\phi\). In the context of the current problem, an optimized \({\varvec{k}}\) value would represent a set of rate coefficients that closely match the uranium oxide formation rates observed in the laser ablation or PFR experiments. Typically, deterministic nonlinear least squares methods, such as the Gauss-Newton or Levenberg-Marquadt methods3.0.CO;2-R (1998)." href="#ref-CR21" id="ref-link-section-d48863039e1787"21,22,23, are employed for such optimization problems. Modern computational techniques, such as neural networks24, can also be used to this end./p> Tadi, M. & Yetter, R. A. Evaluation of the rate constants in chemical reactions. Int. J. Chem. Kinet. 30, 151–159. 3.0.CO;2-R"https://doi.org/10.1002/(SICI)1097-4601(1998)30:2<151::AID-KIN7>3.0.CO;2-R (1998)./p> 3.0.CO;2-R" data-track-action="article reference" href="https://doi.org/10.1002%2F%28SICI%291097-4601%281998%2930%3A2%3C151%3A%3AAID-KIN7%3E3.0.CO%3B2-R" aria-label="Article reference 21" data-doi="10.1002/(SICI)1097-4601(1998)30:23.0.CO;2-R"Article CAS Google Scholar /p>